Faculty Advisor

Carlo Pinciroli

Faculty Advisor

William R. Michalson

Faculty Advisor

Michael A. Gennert




Area exploration and information gathering are one of the fundamental problems in mobile robotics. Much of the current research in swarm robotics is aimed at developing practical solutions to this problem. Exploring large environments poses three main challenges. Firstly, there is the problem of limited connectivity among the robots. Secondly, each of the robots has a limited battery life which requires the robots to be recharged each time they are running out of charge. Lastly, the robots have limited memory to store data. In this work, we mainly focus on the memory and energy constraints of the robot swarm. The memory constraint forces the robots to travel to a centralized data collection center called sink, to deposit data each time their memory is full. The energy constraint forces the robots to travel to the charging station called dock to recharge when their battery level is low. However, this navigation plan is inefficient in terms of energy and time. There is additional energy dissipation in depositing data at the centralized sink. Moreover, ample amount of time is spent in traveling from one end of the arena to the sink owing to the memory constraint. The goal is that the robots perform data gathering in the least time possible with the optimal use of energy. Both the energy and time spent while depositing data at the sink act as an additional overhead cost to this goal. In this work, we propose to study an algorithm to tackle this scenario in a decentralized manner. We implement a dynamic task allocation algorithm which accomplishes the goal of exploration with data gathering by assigning roles to robots based on their memory buffer and energy levels. The algorithm assigns two sets of roles, to the entire group of robots, namely: Role A is the data gatherer, a robot which does the task of workspace exploration and data gathering, and Role B is data relayer, a robot which does the task of data transportation from data gatherers to the sink. By this division of labor, the robots dynamically decide which role to choose given the contradicting goals of maximizing data gathering and minimizing energy loss. The choice of a robot to perform the task of data gathering or data relaying is the key problem tackled in this work. We study the performance of the algorithm in terms of task distribution, time spent by the robots on each task and data throughput. We analyze the behavior of the robot swarm by varying the energy constraints, timeout parameter as well as strategies for relayer choice. We also test whether the algorithm is scalable.


Worcester Polytechnic Institute

Degree Name



Robotics Engineering

Project Type


Date Accepted



Restricted-WPI community only


energy constraints, buffer constraints, task allocation, swarm robotics

Available for download on Friday, April 26, 2019