Identifier

etd-012616-134431

Abstract

In this thesis, we perform analysis and prediction for community structures in graphs using unsupervised learning. The methods we use require the data matrices to be of low rank, and such matrices appear quite often in real world problems across a broad range of domains. Such a modelling assumption is widely considered by classical algorithms such as principal component analysis (PCA), and the same assumption is often used to achieve dimensionality reduction. Dimension reduction, which is a classic method in unsupervised learning, can be leveraged in a wide array of problems, including prediction of strength of connection between communities from unlabeled or partially labeled data. Accordingly, a low rank assumption addresses many real world problems, and a low rank assumption has been used in this thesis to predict the strength of connection between communities in Amazon product data. In particular, we have analyzed real world data across retail and cyber domains, with the focus being on the retail domain. Herein, our focus is on analyzing the strength of connection between the communities in Amazon product data, where each community represents a group of products, and we are given the strength of connection between the individual products but not between the product communities. We call the strength of connection between individual products first order data and the strength of connection between communities second order data. This usage is inspired by [1] where first order time series are used to compute second order covariance matrices where such covariance matrices encode the strength of connection between the time series. In order to find the strength of connection between the communities, we define various metrics to measure this strength, and one of the goals of this thesis is to choose a good metric, which supports effective predictions. However, the main objective is to predict the strength of connection between most of the communities, given measurements of the strength of connection between only a few communities. To address this challenge, we use modern extensions of PCA such as eRPCA that can provide better predictions and can be computationally efficient for large problems. However, the current theory of eRPCA algorithms is not designed to treat problems where the initial data (such as the second order matrix of communities strength) is both low rank and sparse. Therefore, we analyze the performance of eRPCA algorithm on such data and modify our approaches for the particular structure of Amazon product communities to perform the necessary predictions.

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Data Science

Project Type

Thesis

Date Accepted

2016-01-26

Accessibility

Unrestricted

Subjects

eRPCA, Community Prediction, Low Rank, Sparse Matrix

Share

COinS