Faculty Advisor or Committee Member

Neil Heffernan, Advisor

Faculty Advisor or Committee Member

Neil Heffernan

Identifier

etd-041416-122623

Abstract

With the wide usage of online tutoring systems, researchers become interested in mining data from logged files of these systems, so as to get better understanding of students. Varieties of aspects of students’ learning have become focus of studies, such as modeling students’ mastery status and affects. On the other hand, Randomized Controlled Trial (RCT), which is an unbiased method for getting insights of education, finds its way in Intelligent Tutoring System. Firstly, people are curious about what kind of settings would work better. Secondly, such a tutoring system, with lots of students and teachers using it, provides an opportunity for building a RCT infrastructure underlying the system. With the increasing interest in Data mining and RCTs, the thesis focuses on these two aspects. In the first part, we focus on analyzing and mining data from ASSISTments, an online tutoring system run by a team in Worcester Polytechnic Institute. Through the data, we try to answer several questions from different aspects of students learning. The first question we try to answer is what matters more to student modeling, skill information or student information. The second question is whether it is necessary to model students’ learning at different opportunity count. The third question is about the benefits of using partial credit, rather than binary credit as measurement of students’ learning in RCTs. The fourth question focuses on the amount that students spent Wheel Spinning in the tutoring system. The fifth questions studies the tradeoff between the mastery threshold and the time spent in the tutoring system. By answering the five questions, we both propose machine learning methodology that can be applied in educational data mining, and present findings from analyzing and mining the data. In the second part, we focused on RCTs within ASSISTments. Firstly, we looked at a pilot study of reassessment and relearning, which suggested a better system setting to improve students’ robust learning. Secondly, we proposed the idea to build an infrastructure of learning within ASSISTments, which provides the opportunities to improve the whole educational environment.

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Computer Science

Project Type

Thesis

Date Accepted

2016-04-14

Accessibility

Unrestricted

Subjects

ASSISTments, Randomized Controlled Trials, Data Mining, Student Modeling

Share

COinS