Faculty Advisor

Mark W. Richman

Faculty Advisor

Raffaele Potami

Faculty Advisor

John J. Blandino

Faculty Advisor

Nikolaos A. Gatsonis

Faculty Advisor

Michael A. Demetriou


This work investigates numerically the process of Teflon ablation using a finite-volume discretization, implicit time integration and a domain decomposition method in three-dimensions. The interest in Teflon stems from its use in Pulsed Plasma Thrusters and in thermal protection systems for reentry vehicles. The ablation of Teflon is a complex process that involves phase transition, a receding external boundary where the heat flux is applied, an interface between a crystalline and amorphous (gel) phase and a depolymerization reaction which happens on and beneath the ablating surface. The mathematical model used in this work is based on a two-phase model that accounts for the amorphous and crystalline phases as well as the depolymerization of Teflon in the form of an Arrhenius reaction equation. The model accounts also for temperature-dependent material properties, for unsteady heat inputs and boundary conditions in 3D. The model is implemented in 3D domains of arbitrary geometry with a finite volume discretization on unstructured grids. The numerical solution of the transient reaction-diffusion equation coupled with the Arrhenius-based ablation model advances in time using implicit Crank-Nicolson scheme. For each time step the implicit time advancing is decomposed into multiple sub-problems by a domain decomposition method. Each of the sub-problems is solved in parallel by Newton-Krylov non-linear solver. After each implicit time-advancing step, the rate of ablation and the fraction of depolymerized material are updated explicitly with the Arrhenius-based ablation model. After the computation, the surface of ablation front and the melting surface are recovered from the scalar field of fraction of depolymerized material and the fraction of melted material by post-processing. The code is verified against analytical solutions for the heat diffusion problem and the Stefan problem. The code is validated against experimental data of Teflon ablation. The verification and validation demonstrates the ability of the numerical method in simulating three dimensional ablation of Teflon.


Worcester Polytechnic Institute

Degree Name



Mechanical Engineering

Project Type


Date Accepted





Unstructured Grid, Crank-Nicolson Method, Finite Volume Method, Domain Decomposition, Transient Ablation, Teflon