Faculty Advisor

Alexander Wyglinski

Faculty Advisor

Andrew Worthen

Faculty Advisor

William Michalson




As the demand for wireless communication systems grows, the need for spectrum grows accordingly. However, a large portion of the usable spectrum has already been exclusively licensed to various entities. This exclusive allocation method encourages spectrum to be left unused if the licensee has no need for that spectrum. In order to better utilize spectrum and formulate new approaches for greater spectrum use efficiency, it is imperative to possess a thorough understanding about how wireless spectrum behaves over time, frequency, and space. In this thesis, a practical, scalable, and low-cost wideband distributed spectrum sensing system is designed, implemented, and tested. The proposed system is made up of a collection of nodes that use general purpose, off-the-shelf computer hardware as well as a collection of inexpensive software-defined radio (SDR) equipment in order to collect and analyze spectrum data that varies across time, frequency, and space. The spectrum data the proposed system collects is the power present at a given frequency. The tools needed to analyze the gathered data are also created, including a periodogram and spectrogram function, which visualize average spectrum use over a period of time and as spectrum use varies with time, respectively. The proposed system also facilitates the testing of a spatio-spectrum characterization method using real data. This method has only been simulated up to this point. The characterization technique allows for spatially varying spectrum measurements to be visualized using heat maps.


Worcester Polytechnic Institute

Degree Name



Electrical & Computer Engineering

Project Type


Date Accepted





wireless, communications systems, spectrum sensing