Faculty Advisor or Committee Member

José M. Argüello, Advisor




Metal homeostasis in plants is regulated by diverse mechanisms that act together to maintain optimal metal ion concentrations inside the cell. P1B-ATPases are heavy metal transport ATPases that are likely to be related to these processes. The sequencing of the genome of Arabidopsis thaliana revealed the presence of eight putative P1B-ATPases, HMA1-8. The main goal in this work is to characterize of the role of P1B-ATPases in plant metal homeostasis. Toward this goal, the P1B-ATPases HMA1 and HMA6 from Arabidopsis thaliana were cloned from leaves and sequenced. Results from RT-PCR experiments show ubiquitous expression in planta of this two ATPases, except for HMA1 that does not express in roots. Upon Cu2+ exposure during growth, expression of HMA6 increases in seedlings. HMA1 expression increases when seedlings are grown in high Cu2+ and Co2+ media, and decreases when grown in high concentrations of Zn2+ and Ni2+. hma1-1 plants have smaller size and less chlorophyll content than WT plants. Growth is affected in hma1-1 seedlings when grown in Zn2+, Mn2+, Fe2+, Co2+ and Cu2+ deficient media, or when these metals are in excess. Moreover, hma1-1 plants show an increase in Zn2+, Mn2+ and Fe2+ content in whole plants compared to WT plants. Mutant plants also show increased levels of HMA3 and HMA4 transcripts (Zn2+/Cd2+/Pb2+ P1B-ATPases), upregulation of metallothioneins 1a and 2b, downregulation of metallothionein 1c, and a decrease in the phytochellatin synthases 1 and 2 transcripts, compared to WT plants. Homozygous for mutation in HMA6 seems to be lethal, given that none was recovered after screening. These results indicate HMA1 and HMA6 as essential components of plant metal homeostasis in Arabidopsis thaliana.


Worcester Polytechnic Institute

Degree Name



Chemistry & Biochemistry

Project Type


Date Accepted





plant metal homeostasis, P1B ATPases, Metal ions, Homeostasis, Carrier proteins, Arabidopsis thaliana