Identifier

etd-01125-102801

Abstract

The characteristics of a Zinc/Air (Zn/Air) primary cell are discussed. In addition, current technologies and the corresponding electrical performance are introduced. The basic principles of operation of a Zn/Air primary cell are discussed, focusing on the anode, cathode, and electrolyte. Basic kinetic and transport expressions are developed for the two main components of the cell: the anode and cathode compartments, based on which an overall formula for the cell polarization is developed. Input parameters are selected and approximated where possible to observe the model¡¦s ability to predict potential versus current density. Time-dependent anode performance is accomplished through the use of the shrinking core reaction model for the discharge of the zinc particles. The time-dependent dimensionless radius of the zinc particle (ď) is then used in conjunction with the developed transport and kinetic expressions for the prediction of the overall cell performance as a function of time. Plots of cell voltage prediction versus time and percent capacity versus time are presented. The simulations indicate an adequate approximate analytic model valid for a variety of drain rates corresponding to current hearing instrument devices in the market.

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Chemical Engineering

Project Type

Thesis

Date Accepted

2005-01-12

Accessibility

Unrestricted

Subjects

electrochemistry, air, performance model, zinc, performance modeling

Share

COinS