Faculty Advisor or Committee Member

Kristin K. Wobbe, Advisor

Identifier

etd-0507104-110551

Abstract

Upon detection of a pathogen, plants initiate specific signaling events designed to prevent host colonization and pathogen proliferation. Appearance of the hypersensitive response (HR), a type of programmed cell death signifies activation of active defenses in response to a one-to-one recognition of host, Resistance or R gene, and pathogen, avirulence or avr gene, encoded products. Turnip crinkle virus (TCV), however, has been shown to suppress the ability of Col-0 Arabidopsis thaliana plants to produce the HR in response to an avirulence factor. The extent of suppression was quantified by measuring cellular electrolyte leakage resulting from programmed cell death. Interestingly, cellular ion leakage levels were significantly lower in TCV-infected plants when challenged with bacteria expressing either of two bacterial effectors avrRpt2 or avrRpm1, suggesting that TCV can suppress the HR to a range of HR-inducing avirulence factors. In order to determine the viral component(s) responsible for mediating this suppression, each of the five TCV open reading frames (ORFs) was tested using an Agrobacterium tumefaciens-mediated transient expression assay in Nicotiana benthamiana. Though sequencing of the five TCV clones revealed mutations in the p28, p88, and p9 clones, Agro infiltration of an HR-inducing system in conjunction with individual TCV ORFs, or combinations of, was used to gather data to determine the role each may possess in the suppression phenotype. Full-length TCV was also expressed in the presence of AvrPto/Pto to establish suppression phenotype in Nicotiana. To assay for suppression of cell death in a heterologous system, both the mutant and wild-type clones were also tested in yeast for cell-death suppression induced by hydrogen peroxide exposure.

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Chemistry & Biochemistry

Project Type

Thesis

Date Accepted

2004-05-07

Accessibility

Unrestricted

Subjects

plant pathogen interactions, turnip crinkle virus, Phytopathogenic microorganisms, Turnip crinkle virus

Share

COinS