Faculty Advisor or Committee Member

Samuel M. Politz, Advisor

Faculty Advisor or Committee Member

David S. Adams, Committee Member

Faculty Advisor or Committee Member

Elizabeth F. Ryder, Committee Member




C. elegans is as an extremely powerful model for the study of innate immunity. MAP kinase signaling pathways in C. elegans are involved in the response of C. elegans to infection by pathogenic bacteria. The yeast S. cerevisiae can infect C. elegans, producing pathogenic effects. In this project, we tested whether several MAP kinase pathways are important for C. elegans¡¯ resistance to yeast infection. We tested members of several MAP kinase pathways including tir-1, nsy-1, sek-1 and pmk-1 in the p38 pathway, mek-1, jnk-1 and kgb-1 in JNK pathway and mek-2 and mpk-1 in the ERK pathway. We used survival assays to compare the responses of mutants of components of these pathways to the control responses of wild-type C. elegans. In the survival assay, we found that mutants in all three MAP kinase pathways showed a decreased survival relative to wild type; therefore all three pathways are important for innate immunity against the yeast pathogen. With respect to the p38 pathway, mutations affected survival but not the deformed anal region (Dar) phenotype, a putative defensive response induced by yeast in wild-type C. elegans. This indicates that for the p38 pathway, survival depends on some other immune response besides Dar. Finally, we hypothesize that cross talk occurs between p38 and JNK MAPK pathways in the C. elegans immune responses.


Worcester Polytechnic Institute

Degree Name



Biology & Biotechnology

Project Type


Date Accepted





MAP kinase pathways, C. elegans, S. cerevisiae