Identifier

etd-011409-144732

Abstract

As handheld devices have become increasingly popular, powerful programmable graphics hardware for mobile and handheld devices has been deployed. While many resources on mobile devices are limited, the predominant problem for mobile devices is their limited battery power. Several techniques have been proposed to increase the energy efficiency of mobile applications and improve battery life. In this thesis, we propose a new dynamic voltage and frequency scaling (DVFS) on Graphics Processing Units (GPU). In most cases, cues within the graphics appli- cation can be used to predict portions of a GPU that will be used or unused when the application is run. We partition the GPU into six clock domains that can be clocked at different rates. Specifically, each domain it has its own voltage and frequency set- ting based on its predicted workload to save energy without reducing applications frame rates. In addition, we propose an signature-based algorithm for predicting the workload offered to our six clock domains by a given application to decide voltage and frequency settings. We conduct experiments and compare the results of our new signature based workload prediction algorithm with some other traditional interval based workload prediction algorithms. Our results show that our signature-based prediction can save 30-50% energy without afecting application frame rates.

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Computer Science

Project Type

Thesis

Date Accepted

2009-01-14

Accessibility

Unrestricted

Subjects

Dynamic Voltage and Frequency Scaling(DVFS), Energy, Graphics Process Unit(GPU), Multiple Clock Domain(MCD), Pocket computers, Computer graphics

Share

COinS