Faculty Advisor or Committee Member

William J. Martin, Advisor

Faculty Advisor or Committee Member

Micha Hofri

Identifier

etd-052915-161217

Abstract

"Experts in information theory have long been interested in the maximal size, A(n, d), of a binary error-correcting code of length n and minimum distance d, The problem of determining A(n, d) involves both the construction of good codes and the search for good upper bounds. For quite some time now, Delsarte's linear programming approach has been the dominant approach to obtaining the strongest general purpose upper bounds on the efficiency of error-correcting codes. From 1973 forward, the linear programming bound found many applications, but there were few significant theoretical advances until Schrijver proposed a new code upper bound via semidefinite programming in 2003. Using the Terwilliger algebra, a recently introduced extension of the Bose-Mesner algebra, Schrijver formulated a new SDP strengthening of the LP approach. In this project we look at the dual solutions of the semidefinite programming bound for binary error-correcting codes. We explore the combinatorial meaning of these variables for small n and d, such as n = 4 and d = 2. To obtain information like this, we wrote a computer program with both Matlab and CVX modules to get solution of our primal SDP formulation. Our program efficiently generates the primal solutions with corresponding constraints for any n and d. We also wrote a program in C++ to parse the output of the primal SDP problem, and another Matlab script to generate the dual SDP problem, which could be used in assigning combinatorial meaning to the values given in the dual optimal solution. Our code not only computes both the primal and dual optimal variable values, but allows the researcher to display them in meaningful ways and to explore their relationship and dependence on arameters. These values are expected to be useful for later study of the combinatorial meaning of such solutions."

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Computer Science

Project Type

Thesis

Date Accepted

2015-05-29

Accessibility

Unrestricted

Subjects

semidefinite programming, binary codes, code size

Share

COinS