Etd

Development of an Electromagnetic Glottal Waveform Sensor for Applications in High Acoustic Noise Environments

Public

Downloadable Content

open in viewer

The challenges of measuring speech signals in the presence of a strong background noise cannot be easily addressed with traditional acoustic technology. A recent solution to the problem considers combining acoustic sensor measurements with real-time, non-acoustic detection of an aspect of the speech production process. While significant advancements have been made in that area using low-power radar-based techniques, drawbacks inherent to the operation of such sensors are yet to be surmounted. Therefore, one imperative scientific objective is to devise new, non-invasive non-acoustic sensor topologies that offer improvements regarding sensitivity, robustness, and acoustic bandwidth. This project investigates a novel design that directly senses the glottal flow waveform by measuring variations in the electromagnetic properties of neck tissues during voiced segments of speech. The approach is to explore two distinct sensor configurations, namely the ""six-element"" and the ""parallel-plate"" resonator. The research focuses on the modeling aspect of the biological load and the resonator prototypes using multi-transmission line (MTL) and finite element (FE) simulation tools. Finally, bench tests performed with both prototypes on phantom loads as well as human subjects are presented.

Creator
Contributors
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-0114104-142855
Keyword
Advisor
Committee
Defense date
Year
  • 2004
Date created
  • 2004-01-14
Resource type
Rights statement

Relations

In Collection:

Items

Items

Permanent link to this page: https://digital.wpi.edu/show/8p58pd120