Faculty Advisor

Taskin Padir

Faculty Advisor

Xinming Huang

Faculty Advisor

Michael Gennert


"Stereovision has been applied in many fields including UGV (Unmanned Ground Vehicle) navigation and surgical robotics. Traditionally most stereovision applications are binocular which uses information from a horizontal 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit application like distance finding, object recognition and detection. However, as a result of an extra camera, additional information to be processed would increase computational burden and hence not practical in many time critical applications like robotic navigation and surgical robot. Due to the nature of GPUÂ’s highly parallelized SIMD (Single Instruction Multiple Data) architecture, GPGPU (General Purpose GPU) computing can effectively be used to parallelize the large data processing and greatly accelerate the computation of algorithms used in trinocular stereovision. So the combination of trinocular stereovision and GPGPU would be an innovative and effective method for the development of stereovision application. This work focuses on designing and implementing a real-time trinocular stereovision algorithm with GPU (Graphics Processing Unit). The goal involves the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. Algorithms were developed with many different basic image processing methods and a winner-take-all method is applied to perform fusion of disparities in different directions. The results are compared in accuracy and speed to verify the improvement."


Worcester Polytechnic Institute

Degree Name



Electrical & Computer Engineering

Project Type


Date Accepted





OpenCV, Computer Vision, Trinocular, Stereovision, GPGPU, CUDA