Faculty Advisor

Lui, Roger Y


In this MQP, a mathematical model is created for two viruses' effects on the human immune system. These viruses are Human Immunodeficiency Virus (HIV) and Epstein-Barr Virus (EBV). First, two systems of ordinary differential equations were analyzed using information from papers written by Nowak and May (HIV), and Hyunh and Adler (EBV), respectively. Then, MATLAB was used to solve each of the systems and find steady states and eigenvalues of the Jacobian evaluated at the steady states for the EBV model. The EBV model, a system of ten equations, was scaled and a series of steps were taken to reduce the model to a system of three equations. This system was solved numerically using MATLAB and shown to be consistant with the original model by Huynh and Adler.


Worcester Polytechnic Institute

Date Accepted

April 2012


Mathematical Sciences

Project Type

Major Qualifying Project



Advisor Department

Mathematical Sciences