Faculty Advisor

Brown, Donald R.

Faculty Advisor

Paffenroth, Randy Clinton

Abstract

In this Major Qualifying Project, we worked alongside the online daily fantasy sports company DraftKings to build an algorithm that would predict which of the company's contests would be profitable for them. Our goal was to detect contests at risk of not filling to their maximum number of entrants by four hours before the contest closed. We combined categorical and numerical header data provided by DraftKings for hundreds of thousands of contests using modern data science techniques such as ensemble methods. We then utilized parameter estimation techniques to model the time series data of entrants into a given contest. Finally these parameters were fed into a Random Forest algorithm with the header data that provided our final prediction as to whether a contest would fill or not.

Publisher

Worcester Polytechnic Institute

Date Accepted

April 2019

Major

Computer Science

Major

Electrical and Computer Engineering

Major

Mathematical Sciences

Project Type

Major Qualifying Project

Accessibility

Unrestricted

Advisor Department

Electrical and Computer Engineering

Advisor Department

Mathematical Sciences

Share

COinS