Faculty Advisor

Weekes, Suzanne L.

Faculty Advisor

Neamtu, Rodica

Faculty Advisor

Solovey, Erin

Abstract

This project explores algorithms that detect motion anomalies in data collected using Functional Near-Infrared Spectroscopy (fNIRS). fNIRS is a new type of noninvasive brain imaging technology that provides information about the dynamic cognitive state of individuals doing tasks in the real world. The portability of fNIRS allows researchers to model brain activity in everyday situations. The data is collected using many sensors, contributing to its complexity and justifying analysis using statistical and machine learning methods. The study of anomaly detection of fNIRS is well sought-after as finding anomalies leads to more accurate data analysis. The results of this research include anomaly detection methods and a platform that allows others to analyze their own data using these methods.

Publisher

Worcester Polytechnic Institute

Date Accepted

2020-05-15

Major

Computer Science

Project Type

Major Qualifying Project

Accessibility

Unrestricted

Advisor Department

Mathematical Sciences

Advisor Department

Computer Science

Share

COinS